Question 9. Relativistic corrections become necessary when the expression for the kinetic energy $1/2 \text{ mv}^2$, becomes comparable with mc². where m is the mass of the particle. At what de-Broglie wavelength, will relativistic corrections become important for an electron? (a) A=10nm (b) A = 10^{-1} nm (c) A= 10^{-4} nm (d) A= 10^{-6} nm

Ans-(c),(d)

Key concept: De-Brogile or matter wave is independent of die charge on the material particle. It means, matter wave of de-Broglie wave is associated with every moving particle (whether charged or uncharged). The de-Broglie wavelength at which relativistic corrections become important that the phase velocity of the matter waves can be greater than the speed of the light $(3 \times 10^8 \text{ m/s})$.

The wavelength of de-Broglie wave is given by

$$\lambda = h/p = h/mv$$

Here, $h = 6.6 \times 10^{-34} \text{ Js}$

and for electron, m = 9 x 10-31 kg

To approach these types of problem we use hit and trial method by picking up each option one by one.

In option (a),
$$\lambda_1 = 10 \text{ nm} = 10 \times 10^{-9} \text{ m} = 10^{-8} \text{ m}$$

$$\Rightarrow v_1 = \frac{6.6 \times 10^{-34}}{(9 \times 10^{-31}) \times 10^{-8}}$$
$$= \frac{2.2}{3} \times 10^5 \approx 10^5 \text{ m/s}$$

In option (b),
$$\lambda_2 = 10^{-1} \text{ nm} = 10^{-1} \times 10^{-9} \text{ m} = 10^{-10} \text{ m}$$

$$\Rightarrow v_2 = \frac{6.6 \times 10^{-34}}{(9 \times 10^{-31}) \times 10^{-10}} \approx 10^7 \text{ m/s}$$

In option (c),
$$\lambda_3 = 10^{-4} \text{ nm} = 10^{-4} \times 10^{-9} \text{ m} = 10^{-13} \text{ m}$$

$$\Rightarrow v_3 = \frac{6.6 \times 10^{-34}}{(9 \times 10^{-31}) \times 10^{-13}} \approx 10^{10} \text{ m/s}$$

In option (d),
$$\lambda_4 = 10^{-6} \text{ nm} = 10^{-6} \times 10^{-9} \text{ m} = 10^{-15} \text{ m}$$

$$\Rightarrow v_4 = \frac{6.6 \times 10^{-34}}{(9 \times 10^{-31}) \times 10^{-15}} \approx 10^{12} \text{ m/s}$$

Thus, options (c) and (d) are correct as v_3 and v_4 is greater than 3×10^8 m/s.